Conjecture of Andrews on Partitions

نویسنده

  • M. R. SALESTINA
چکیده

Definition 1.2. For an even integer λ, let Aλ,k,a(n) denote the number of partitions of n into parts such that no part which is not equivalent to 0(mod λ+ 1) may be repeated and no part is equivalent to 0,±(a−λ/2)(λ+1)mod[(2k−λ+1)(λ+1)]. For an odd integer λ, let Aλ,k,a(n) denote the number of partitions of n into parts such that no part which is not equivalent to 0(mod((λ+1)/2)) may be repeated, no part is equivalent to λ+1(mod2λ+2), and no part is equivalent to 0,±(2a−λ)((λ+ 1)/2)mod[(2k−λ+1)(λ+1)].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary Proof of MacMahon’s Conjecture

Major Percy A. MacMahon’s first paper on plane partitions [4] included a conjectured generating function for symmetric plane partitions. This conjecture was proven almost simultaneously by George Andrews and Ian Macdonald, Andrews using the machinery of basic hypergeometric series [1] and Macdonald employing his knowledge of symmetric functions [3]. The purpose of this paper is to simplify Macd...

متن کامل

A Proof of Andrews’ Conjecture on Partitions with No Short Sequences

Our main result establishes Andrews’ conjecture for the asymptotic of the generating function for the number of integer partitions of n without k consecutive parts. The methods we develop are applicable in obtaining asymptotics for stochastic processes that avoid patterns, as a result they yield asymptotics for the number of partitions that avoid patterns. Holroyd, Liggett, and Romik, in connec...

متن کامل

A PROOF OF GEORGE ANDREWS’ AND DAVID ROBBINS’ q-TSPP CONJECTURE

The conjecture that the orbit-counting generating function for totally symmetric plane partitions can be written as an explicit product-formula, has been stated independently by George Andrews and David Robbins around 1983. We present a proof of this long-standing conjecture.

متن کامل

On the Distribution of the spt-Crank

Andrews, Garvan and Liang introduced the spt-crank for vector partitions. We conjecture that for any n the sequence {NS(m,n)}m is unimodal, where NS(m,n) is the number of S-partitions of size n with crank m weight by the spt-crank. We relate this conjecture to a distributional result concerning the usual rank and crank of unrestricted partitions. This leads to a heuristic that suggests the conj...

متن کامل

A PROOF OF GEORGE ANDREWS’ AND DAVE ROBBINS’ q-TSPP CONJECTURE

The conjecture that the orbit-counting generating function for totally symmetric plane partitions can be written as an explicit product-formula, has been stated independently by George Andrews and Dave Robbins around 1983. We present a proof of this long-standing conjecture.

متن کامل

Notes on the spt function of George E . Andrews

Andrews defined spt(n) to be the total number of appearances of the smallest parts in all of the partitions of n. In this paper, we study the statistical distribution of spt(π), the number of smallest parts in the partition π as π ranges over all partitions of n. We also give a combinatorial proof of a conjecture of Hirschhorn, namely that p(0) + · · · + p(n− 1) < spt(n) < p(0) + · · · + p(n) f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004